ลำดับเรขาคณิต
ในทางคณิตศาสตร์ ลำดับเรขาคณิต (อังกฤษ: geometric sequence) คือลำดับของจำนวนซึ่งอัตราส่วนของสมาชิกสองตัวที่อยู่ติดกันในลำดับเป็นค่าคงตัวที่ไม่เป็นศูนย์ ซึ่งอัตราส่วนนั้นเรียกว่า อัตราส่วนร่วม (common ratio) ตัวอย่างเช่น ลำดับ 2, 6, 18, 54, ... เป็นลำดับเรขาคณิตซึ่งมีอัตราส่วนร่วมเท่ากับ 3 และลำดับ 10, 5, 2.5, 1.25, ... มีอัตราส่วนเท่ากับ 0.5 เป็นต้น
ถ้าหากพจน์เริ่มต้นของลำดับเรขาคณิตลำดับหนึ่งคือ a1 และมีอัตราส่วนร่วม r ≠ 0 ดังนั้นพจน์ที่ n ของลำดับนี้คือ
หรือในกรณีทั่วไป จะได้
หรือเขียนได้ด้วยรูปแบบความสัมพันธ์เวียนเกิด
สมบัติเบื้องต้น
แก้การที่จะทำให้ทราบได้ว่าลำดับที่กำหนดให้เป็นลำดับเรขาคณิตหรือไม่ สามารถตรวจสอบได้จากอัตราส่วนของพจน์ที่อยู่ติดกัน ซึ่งจะมีค่าเท่ากันทั้งลำดับ อัตราส่วนร่วมอาจเป็นค่าติดลบก็ได้ ซึ่งจะทำให้เกิดลำดับสลับเครื่องหมาย หมายความว่าจำนวนจะสลับเครื่องหมายบวกลบตลอดทั้งลำดับ เช่น 1, −3, 9, −27, 81, −243, ... เป็นลำดับเรขาคณิตซึ่งมีอัตราส่วนร่วมเท่ากับ −3
พฤติกรรมของจำนวนในการลำดับเรขาคณิตขึ้นอยู่กับค่าของอัตราส่วนร่วม ดังนี้
- ถ้าเป็นจำนวนบวก ทุกพจน์จะมีเครื่องหมายเหมือนกับพจน์แรก
- ถ้าเป็นจำนวนลบ ทุกพจน์จะมีเครื่องหมายบวกลบสลับกัน
- ถ้ามากกว่า 1 ลำดับนั้นจะเพิ่มแบบชี้กำลัง (exponential growth) ไปยังอนันต์
- ถ้าเท่ากับ 1 ลำดับนั้นจะคงที่ทุกพจน์
- ถ้ามีค่าอยู่ระหว่าง −1 ถึง 1 แต่ไม่เป็น 0 ลำดับนั้นจะลดแบบชี้กำลัง (exponential decay) ไปยัง 0
- ถ้าเท่ากับ −1 ลำดับนั้นจะมีเครื่องหมายบวกลบสลับกัน แต่ค่าตัวเลขไม่เปลี่ยนแปลง
- ถ้าน้อยกว่า −1 ค่าสัมบูรณ์ของพจน์ต่างๆ จะเพิ่มแบบชี้กำลังไปยังอนันต์
จะเห็นว่าลำดับเรขาคณิต (ที่มีอัตราส่วนไม่ใช่ −1, 1 หรือ 0) แสดงให้เห็นถึงการเพิ่มหรือการลดแบบชี้กำลัง ต่างกับการเพิ่ม (หรือลด) แบบเชิงเส้นของลำดับเลขคณิต แต่ลำดับทั้งสองชนิดก็มีความเกี่ยวข้องกัน นั่นคือ ถ้าหากใส่ฟังก์ชันเลขชี้กำลังลงในทุกพจน์ของลำดับเลขคณิตก็จะได้ลำดับเรขาคณิต และหากใส่ฟังก์ชันลอการิทึมลงในทุกพจน์ของลำดับเรขาคณิตก็จะได้ลำดับเลขคณิต
ผลรวม
แก้ผลรวมของสมาชิกในลำดับเรขาคณิต เรียกว่า อนุกรมเรขาคณิต (อังกฤษ: geometric series)
เราสามารถทำสูตรให้ง่ายขึ้นโดยการคูณทั้งสองข้างของสมการด้วย แล้วเราจะได้
ซึ่งพจน์อื่นๆ จะตัดกันหายไปหมด จัดรูปแบบใหม่ จะได้สูตรสำหรับคำนวณผลรวม โดยที่ r ≠ 1
ดังนั้นกรณีทั่วไปของสูตรนี้คือ
สำหรับอนุกรมเรขาคณิตที่มีแต่เลขชี้กำลังของ r เป็นจำนวนคู่ คูณทั้งสองข้างด้วย
จะได้สูตร
ส่วนเลขชี้กำลังของ r ที่มีแต่จำนวนคี่
จะได้สูตร
อนุกรมเรขาคณิตไม่จำกัด
แก้อนุกรมเรขาคณิตไม่จำกัด คืออนุกรมเรขาคณิตที่มีจำนวนพจน์ไม่จำกัดหรือเป็นจำนวนอนันต์ อนุกรมนี้จะลู่เข้าค่าใดค่าหนึ่งก็ต่อเมื่อ ค่าสัมบูรณ์ของอัตราส่วนร่วมมีค่าน้อยกว่าหนึ่ง ( ) ค่าของอนุกรมเรขาคณิตไม่จำกัดสามารถคำนวณได้จากสูตรของผลรวมจำกัด
ซึ่ง จะมีค่าเข้าใกล้ 0 เมื่อ k มีค่าเข้าใกล้อนันต์และ ดังนั้น
สำหรับอนุกรมเรขาคณิตที่มีแต่เลขชี้กำลังของ r เป็นจำนวนคู่ จะได้สูตร
ส่วนเลขชี้กำลังของ r ที่มีแต่จำนวนคี่ จะได้สูตร
โดยที่สูตรทั้งหมดด้านบนจะใช้ได้เมื่อ เท่านั้น นอกเหนือจากนี้จะเป็นอนุกรมลู่ออก
ผลคูณ
แก้ผลคูณของลำดับเรขาคณิตก็คือผลคูณของทุกพจน์ในลำดับ และถ้าหากพจน์ทั้งหมดเป็นจำนวนบวก เราจะสามารถคำนวณผลคูณได้ด้วยการหาค่ามัชฌิมเรขาคณิตของพจน์แรกกับพจน์สุดท้าย แล้วยกกำลังด้วยจำนวนพจน์ทั้งหมด ดังนี้
- เมื่อ
- พิสูจน์
กำหนดให้ผลคูณของลำดับเลขคณิตแทนด้วย P
รวมผลจากการคูณเข้าด้วยกัน จะได้
นำสูตรผลรวมของอนุกรมเลขคณิตมาใช้กับเลขชี้กำลังของ r
ยกกำลังสองทั้งสองข้าง
และในที่สุดก็จะได้