นิวเคลียสของอะตอม

นิวเคลียส ของอะตอม (อังกฤษ: Atomic nucleus) เป็นพื้นที่ขนาดเล็กที่หนาแน่นในใจกลางของอะตอม ประกอบด้วยโปรตอน และนิวตรอน (สำหรับอะตอมของไฮโดรเจนธรรมดา นิวเคลียสมีแต่โปรตอนเท่านั้น ไม่มีนิวตรอน) นิวเคลียสถูกค้นพบในปี 1911 โดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้จาก'การทดลองฟอยล์สีทองของ Geiger-Marsden ในปี 1909'. หลังจากการค้นพบนิวตรอนในปี 1932 แบบจำลองของนิวเคลียสที่ประกอบด้วยโปรตอนและนิวตรอนได้รับการพัฒนาอย่างรวดเร็วโดย Dmitri Ivanenko[1] และเวอร์เนอร์ ไฮเซนเบิร์ก[2][3][4][5][6] เกือบทั้งหมดของมวลของอะตอมตั้งอยู่ในนิวเคลียสกับอยู่ในขนาดที่เล็กมากของ'เมฆอิเล็กตรอน' โปรตอนและนิวตรอนจะหลอมรวมกันเพื่อก่อตัวขึ้นเป็นนิวเคลียสด้วยแรงนิวเคลียร์

แบบจำลองของนิวเคลียสของอะตอมแสดงกล่มก้อนอัดแน่นของนิวคลีออน 2 ชนิดคือ โปรตอน (สีแดง) และ นิวตรอน (สีน้ำเงิน) ในแผนภาพนี้ โปรตอนและนิวตรอนเหมือนลูกบอลที่หลอมติดอยู่ด้วยกัน แต่นิวเคลียสที่แท้จริง (ตามความเข้าใจของฟิสิกส์นิวเคลียร์สมัยใหม่) ไม่สามารถอธิบายแบบนี้ แต่ต้องใช้กลศาสตร์ควอนตัมเท่านั้น ในนิวเคลียสที่ครอบครองระดับพลังงานหนึ่ง (เช่นในสภาวะล่างสุด (อังกฤษ: ground state)) แต่ละนิวคลีออนสามารถพูดได้ว่าครอบครองช่วงหนึ่งของตำแหน่ง

เส้นผ่าศูนย์กลางของนิวเคลียสอยู่ในช่วงตั้งแต่ 1.75 fm (1.75 × 10-15 เมตร) สำหรับไฮโดรเจน (เป็นเส้นผ่าศูนย์กลางของโปรตอนตัวเดียว)[7] จนถึงประมาณ 15 fm สำหรับอะตอมหนักที่สุดเช่นยูเรเนียม. มิติเหล่านี้มีขนาดเล็กกว่าเส้นผ่าศูนย์กลางของอะตอมเองอย่างมาก (นิวเคลียส + เมฆอิเล็กตรอน) ซึ่งอยู่ที่ประมาณ 350,000 fm (ยูเรเนียม) จนถึงประมาณ 50,000 fm (ไฮโดรเจน)[8]

สาขาวิชาฟิสิกส์ที่เกี่ยวข้องกับการศึกษาและความเข้าใจเกี่ยวกับนิวเคลียสของอะตอมรวมทั้งองค์ประกอบของมันและแรงที่ผูกมัดมันไว้ด้วยกันจะเรียกว่าฟิสิกส์นิวเคลียร์ หรือฟิสิกส์ของนิวเคลียส

บทนำ

แก้

ประวัติ

แก้

บทความหลัก: แบบจำลองของรัทเทอร์ฟอร์ด

นิวเคลียสถูกค้นพบในปี 1911 ซึ่งเป็นผลมาจากความพยายามของ เออร์เนสต์ รัทเทอร์ฟอร์ด ในการทดสอบแบบจำลองอะตอมของทอมสัน[9] อิเล็กตรอนถูกค้นพบก่อนหน้านี้โดยตัวของ เจ. เจ. ทอมสัน เอง เขารู้ว่าอะตอมมีความเป็นกลางทางไฟฟ้​​า ดังนั้นทอมสันจึงตั้งเป็นทฤษฎีขึ้นว่ามันต้องมีประจุบวกอยู่ในอะตอมเช่นกัน ในรูปแบบเหมือนกับขนมปังลูกเกด(พลัมพุดดิ้ง)ของเขา ทอมสันชี้ให้เห็นว่าอะตอมประกอบด้วยอิเล็กตรอนที่เป็นลบกระจายตัวแบบสุ่มภายในทรงกลมของประจุบวก เออร์เนสต์ รัทเทอร์ฟอร์ดในภายหลังได้หาทางทดสอบแบบใหม่ที่ดำเนินการโดย ฮันส์ ไกเกอร์ และ เออร์เนสต์ มาร์สเดน ภายใต้การดูแลของรัทเทอร์ฟอร์ด การทดสอบเกี่ยวข้องกับการเบี่ยงเบนของกลุ่มอนุภาคแอลฟา (นิวเคลียสของฮีเลียม) ที่ถูกนำทางให้พุ่งเข้าใส่แผ่นบาง ๆ ของฟอยล์โลหะ เขาให้เหตุผลว่าถ้าแบบจำลองของทอมสันถูกต้องกลุ่มอนุภาคแอลฟาที่มีประจุบวกจะทะลุแผ่นฟอยล์ได้อย่างง่ายดายโดยมีความเบี่ยงเบนในเส้นทางน้อยมาก เนื่องจากฟอยล์ควรทำหน้าที่เป็นกลางทางไฟฟ้าถ้าประจุบวกและประจุลบผสมกันอย่างสนิทแนบแน่นเสียจนทำให้มันกลายเป็นกลาง เขาต้องประหลาดใจเมื่อพบว่าอนุภาคจำนวนมากถูกหักเหเป็นมุมที่มีขนาดใหญ่มาก ที่เป็นเช่นนี้ก็เพราะว่ามวลของอนุภาคอัลฟาใหญ่กว่าอิเล็กตรอนประมาณ 8000 เท่า แรงของมันจึงปรากฏเป็นที่ชัดเจนว่ามีความแข็งแกร่งมากจนสามารถเบี่ยงเบนอนุภาคแอลฟาที่มีมวลขนาดใหญ่และเคลื่อนที่ด้วยความเร็วสูง เขาตระหนักว่าแบบจำลองแบบขนมปังลูกเกดอาจจะไม่ถูกต้องและว่าการหักเหของอนุภาคแอลฟาจะสามารถอธิบายได้ถ้าประจุบวกและลบถูกแยกออกจากกันและมวลของอะตอมเป็นจุดที่มีความเข้มข้นของประจุบวกเท่านั้น นี้แสดงถึงความถูกต้องของความคิดของอะตอมของนิวเคลียร์ที่ว่ามีศูนย์กลางที่หนาแน่นของประจุบวกและมวล

นิรุกติศาสตร์

แก้

คำว่านิวเคลียสมาจากคำภาษาละตินว่านิวเคลียส คำย่อของ nux ("นัท") หมายถึงเมล็ด (หรือ "ถั่วเล็ก") ภายในผลไม้ประเภทน้ำ (เช่นลูกพีช). ในปี 1844, ไมเคิล ฟาราเดย์ ใช้คำนี้ในการอ้างถึง "จุดกลางของอะตอม" ความหมายของอะตอมที่ทันสมัย​​ถูกเสนอโดยเออร์เนสต์ รัทเทอร์ฟอร์ดในปี 1912[10] อย่างไรก็ตาม ไม่ได้มีการยอมรับคำว่า "นิวเคลียส" ในทฤษฎีอะตอมโดยทันที ในปี 1916 กิลเบิร์ท เอ็น ลูอิสได้ระบุไว้ในบทความที่มีชื่อเสียงของเขา อะตอมและโมเลกุล ว่า "อะตอมประกอบด้วย kernel และส่วนนอกอะตอมหรือเปลือกนอก"[11]

การประกอบขึ้นเป็นนิวเคลียส

แก้
 
ภาพแสดงรูปร่างของอะตอมฮีเลียม-4 ที่มีเมฆอิเล็กตรอนเป็นเงาสีเทา ในนิวเคลียสขนาดเล็กกว่า 1 เฟมโตเมตร ประกอบด้วยโปรตอนสองต้วและนิวตรอนสองตัวแสดงเป็นสีแดงและสีฟ้า ภาพนี้แสดงอนุภาคที่แยกจากกัน ในขณะที่อะตอมฮีเลียมของจริง โปรตอนจะซ้อนทับกันและมีแนวโน้มส่วนใหญ่ที่จะพบในใจกลางของนิวเคลียส และนิวตรอนก็จะเป็นแบบเดียวกัน ดังนั้นทั้งสี่อนุภาคมักจะถูกพบอยู่ในพื้นที่เดียวกันที่จุดตรงกลาง ภาพคลาสสิกของอนุภาคที่แยกจากกันไม่ได้จำลองรูปแบบการกระจายของประจุไฟฟ้าที่รู้จักกันในนิวเคลียสที่มีขนาดเล็กมาก ภาพที่ถูกต้องมากขึ้นก็คือการกระจายของนิวคลีออนทั้งหลายในนิวเคลียสของฮีเลียมจะอยู่ใกล้กับเมฆอิเล็กตรอนของฮีเลียมที่ได้แสดงในที่นี่มากกว่าจะอยู่ใกล้กับภาพของนิวเคลียสแบบเพ้อฝัน ถึงแม้ว่าจะอยู่ในขนาดที่เล็กกว่ามากก็ตาม

นิวเคลียสของอะตอมจะประกอบด้วยอนุภาคนิวตรอนและอนุภาตโปรตอน ซึ่งเป็นการแสดงให้เห็นชัดถึงอนุภาคมูลฐานอื่น ๆ ที่เรียกว่าควาร์ก ที่จะถูกยึดเข้าด้วยกันโดยแรงนิวเคลียร์ที่แข็งแกร่ง ในการผสมกันของอนุภาคที่เสถียรและแน่นอนชุดหนึ่งของแฮดรอนที่เรียกว่าแบริออน แรงนิวเคลียร์ที่แข็งแกร่งจะขยายออกไปจนไกลพอจากแบริออนแต่ละตัวเพื่อที่จะหลอมรวมนิวตรอนและโปรตอนเข้าด้วยกันต้านกับแรงไฟฟ้​​าที่ผลักออกระหว่างโปรตอนด้วยกันที่มีประจุบวก แรงนิวเคลียร์ที่แข็งแกร่งมีระยะทำการที่สั้นมากและเป็นลดลงเป็นศูนย์อย่างรวดเร็วเพียงแค่เลยขอบของนิวเคลียส การปฏิบัติการร่วมกันของนิวเคลียสประจุบวกก็คือเพื่อที่จะยึดอิเล็กตรอนประจุไฟฟ้าลบให้อยู่ในวงโคจรของพวกมันรอบนิวเคลียส การสะสมของอิเล็กตรอนประจุลบที่โคจรรอบนิวเคลียสจะแสดงความเป็นพี่น้องกันเพื่อการกำหนดรูปแบบการทำงานบางอย่างและจำนวนของอิเล็กตรอนที่จะทำให้วงโคจรของพวกมันมีเสถียรภาพ องค์ประกอบทางเคมีที่อะตอมจะแสดงออกมาแบบไหนจะถูกกำหนดโดยจำนวนของโปรตอนในนิวเคลียสนั้น โดยที่อะตอมที่เป็นกลางจะมีจำนวนของอิเล็กตรอนที่โคจรรอบนิวเคลียสเท่ากันกับจำนวนของโปรตอนในนิวเคลียส องค์ประกอบทางเคมีของแต่ละอะตอมจะสามารถสร้างรูปแบบการทำงานของอิเล็กตรอนที่มีเสถียรมากยิ่งขึ้นโดยการทำงานร่วมกันเพื่อแบ่งปันอิเล็กตรอนของพวกมัน การแบ่งปันของอิเล็กตรอนเพื่อสร้างวงโคจรรอบนิวเคลียสที่เสถียรทำให้เกิดวิชาการด้านเคมีของโลกแมคโครของเรา

โปรตอนเป็นตัวกำหนดประจุทั้งหมดของนิวเคลียส นั่นคือตัวตนทางเคมีของมัน. นิวตรอนมีความเป็นกลางทางไฟฟ้​​า แต่ก็เป็นส่วนหนึ่งของ​​มวลของนิวเคลียสเกือบเท่ากับมวลของโปรตอน นิวตรอนเป็นตัวอธิบายปรากฏการณ์ของไอโซโทป - ความหลากหลายของสายพันธุ์ที่มีองค์ประกอบทางเคมีเหมือนกันแต่แตกต่างกันเฉพาะในมวลอะตอมของพวกมันเท่านั้น ไม่ใช่ปฏิกิริยาทางเคมี

โปรตอนและนิวตรอน

แก้

โปรตอนและนิวตรอนเป็นพวกเฟอร์มิออน ที่มีเลขควอนตัมแบบ isospin ที่แข็งแกร่ง (อังกฤษ: strong isospin quantum number) ที่แตกต่างกัน ดังนั้นสองโปรตอนและสองนิวตรอนสามารถแชร์การทำงานแบบคลื่น (อังกฤษ: wave function) ในพื้นที่เดียวกันได้เนื่องจากพวกมันมีตัวตนแบบควอนตัมไม่เหมือนกัน บางครั้งพวกมันถูกมองว่าเป็นอนุภาคเดียวกันแต่มีสภาวะควอนตัมสองสภาวะที่แตกต่างกัน นั่นคือเป็น นิวคลีออน.[12][13] อนุภาคในกลุ่มเฟอร์มีออนสองตัว เช่นสองโปรตอน หรือสองนิวตรอน หรือโปรตอนหนึ่งตัว + นิวตรอนหนึ่งตัว (เป็นดิวเทอรอน) สามารถแสดงพฤติกรรมแบบโบซอน เมื่อพวกมันถูกผูกเข้าด้วยกันเป็นคู่อย่างหลวม ๆ ที่มีสปินเป็นจำนวนเต็ม

ในกรณีที่หายากของ hypernucleus แบริออนตัวที่สามเรียกว่า ไฮเปอรอน จะมีสเตรนจ์ควาร์กหนึ่งตัวหรือมากกว่า และ/หรือควาร์กผิดปกติอื่น ๆ, มันก็ยังสามารถแชร์ฟังก์ชันคลื่นได้อีกด้วย อย่างไรก็ตามนิวเคลียสประเภทนี้ไม่เสถียรอย่างยิ่งและไม่สามารถพบได้บนโลกยกเว้นในการทดลองทางฟิสิกส์พลังงานสูง

นิวตรอนมีประจุบวก มีรัศมี ≈ 0.3 เฟมโตเมตรล้อมรอบด้วยประจุลบชดเชยด้วยรัศมีระหว่าง 0.3 เฟมโตเมตรถึง 2 เฟมโตเมตร โปรตอนมีการกระจายประจุบวกที่สลายตัวแบบเอ็กโปเนนเชียลด้วยรัศมีกำลังสองเฉลี่ย (อังกฤษ: mean square radius) ประมาณ 0.8 เฟมโตเมตร[14]

แรง

แก้

นิวเคลียสทั้งหลายจะยึดเหนึ่ยวอยู่ด้วยกันด้วยแรงแข็งแกร่งที่เหลือ (แรงนิวเคลียร์) แรงแข็งแกร่งที่เหลือเป็นส่วนที่เหลือเล็กน้อยของอันตรกิริยาอย่างเข้มที่ยึดเหนี่ยวกลุ่มควาร์กเข้าด้วยกันเพื่อก่อตัวเป็นกลุ่มโปรตอนและกลุ่มนิวตรอน แรงนี้จะมีค่าอ่อนอย่างมากระหว่างกลุ่มนิวตรอนและกลุ่มโปรตอนเพราะส่วนใหญ่มันจะถูกปรับให้เป็นกลางภายในกลุ่มพวกมัน ในทางเดียวกันกับที่แรงแม่เหล็กไฟฟ้​​าระหว่างกลุ่มอะตอมที่เป็นกลาง (เช่นแรงแวนเดอร์วาลส์ ที่กระทำระหว่างสองอะตอมของก๊าซเฉื่อย) จะมีค่าที่อ่อนอย่างมากกว่าแรงแม่เหล็กไฟฟ้​​าที่ยึดเหนี่ยวหลายส่วนของอะตอมเข้าด้วยกันอยู่ภายใน (เช่นแรงต่าง ๆ ที่ยึดกลุ่มอิเล็กตรอนในอะตอมก๊าซเฉื่อยชนิดหนึ่งให้ผูกติดไว้กับนิวเคลียสของมัน)

แรงนิวเคลียร์มีแรงดึงดูดอย่างมากในระยะทางของการแยกตัวของนิวคลีออนทั่วไป และแรงนี้ท่วมท้นแรงผลักดันระหว่างกลุ่มโปรตอนเนื่องจากแรงแม่เหล็กไฟฟ้า จึงเป็นการยอมให้นิวเคลียสทั้งหลายมีตัวตน อย่างไรก็ตามแรงแข็งแกร่งที่เหลือมีพิสัยทำงานที่จำกัด เพราะมันสลายตัวได้อย่างรวดเร็วตามระยะทาง (ดูศักยภาพ Yukawa); ดังนั้นเฉพาะนิวเคลียสที่มีขนาดเล็กกว่าขนาดที่แน่นอนบางชนิดเท่านั้นอาจจะสามารถเสถียรได้อย่างสมบูรณ์ นิวเคลียสที่เสถียรได้อย่างสมบูรณ์ที่รู้จักกันดีที่ใหญ่ที่สุด (เช่นเสถียรต่อการสลายให้แอลฟา, บีตา, และแกมมา) ได้แก่ตะกั่ว-208 ซึ่งมีนิวคลีออนทั้งหมด 208 ตัว (นิวตรอน 126 ตัวและโปรตอน 82 ตัว) นิวเคลียสที่มีจำนวนนิวคลีออนมากกว่าจำนวนสูงสุดนี้จะไม่เสถียรและมีแนวโน้มที่จะมีอายุสั้นมากขึ้น อย่างไรก็ตามบิสมัท-209 จะยังคงเสถียรต่อการสลายให้อนุภาคบีตาและมีครึ่งชีวิตที่ยาวที่สุดในการสลายตัวให้แอลฟาของไอโซโทปที่รู้จักใด ๆ ประมาณว่านานกว่าอายุของจักรวาลหนึ่งพันล้านเท่า

แรงแข็งแกร่งที่เหลือจะมีประสิทธิภาพในพิสัยทำการที่สั้นมาก (โดยปกติจะมีระยะเพียงไม่กี่ เฟมโตเมตร (fm) หรือ fermis; ประมาณหนึ่งหรือสองเท่าของขนาดเส้นผ่าศูนย์กลางของนิวคลีออน) และทำให้เกิดแรงดึงดูดระหว่างคู่ใด ๆ ของนิวคลีออน ยกตัวอย่างเช่นระหว่างโปรตอนและนิวตรอนเพื่อด่อตัวเป็นดิวเทอรอน และระหว่างโปรตอนกับโปรตอน และนิวตรอนกับนิวตรอน

แบบจำลองนิวเคลียส

แก้

แม้ว่าแบบจำลองมาตรฐานของฟิสิกส์เชื่อกันว่าสามารถอธิบายได้อย่างสมบูรณ์ถึงองค์ประกอบและพฤติกรรมของนิวเคลียสแล้วก็ตาม แต่การคาดการณ์จากทฤษฎีเกี่ยวกับพื้นที่อื่น ๆ ส่วนใหญ่ของฟิสิกส์ของอนุภาคเป็นเรื่องที่ยากกว่าเสียอีก เนื่องจากเหตุผลสองประการดังต่อไปนี้

  • ในทางหลักการ ฟิสิกส์ภายในนิวเคลียสหนึ่งจะสามารถสร้างขึ้นได้ทั้งหมดจาก quantum chromodynamics (QCD) อย่างไรก็ตาม ในทางปฏิบัติ วิธีการคำนวณและทางคณิตศาสตร์ในปัจจุบันสำหรับการแก้ปัญหา QCD ในระบบพลังงานต่ำเช่นนิวเคลียสจะถูกจำกัดอย่างมาก เป็นเพราะการเปลี่ยนผ่านขั้นตอนที่เกิดขึ้นระหว่างควาร์กพลังงานสูงไปสู่สสารตระกูลแฮดรอนพลังงานต่ำ ซึ่งทำให้เทคนิคของ perturbation ใช้ไม่ได้ ทำให้มันเป็นเรื่องยากที่จะสร้างแบบจำลองของแรงระหว่างนิวคลีออนที่สร้างจาก QCD ที่ถูกต้องได้ วิธีการปัจจุบันจะถูกจำกัดให้เป็นแค่แบบจำลองแบบปรากฏการณ์เช่นศักยภาพอาร์กอน v18 หรือ ทฤษฎีสนามที่มีประสิทธิภาพแบบ chiral[15]
  • ถึงแม้ว่าถ้าแรงนิวเคลียร์จะถูกจำกัดเป็นอย่างดี ปริมาณที่มีนัยสำคัญของพลังงานในการคำนวณจะต้องถูกใช้เพื่อคำนวณคุณสมบัติของนิวเคลียสเริ่มแรกอย่างถูกต้อง การพัฒนาในหลายทฤษฎีร่างกาย (อังกฤษ: many-body theory) ได้ทำให้งานนี้เป็นไปได้สำหรับนิวเคลียสมวลต่ำและค่อนข้างเสถียรจำนวนมาก แต่การปรับปรุงเพิ่มเติมในทั้งวิธีการคำนวณและวิธีการทางคณิตศาสตร์จำเป็นจะต้องถูกดำเนินการก่อนที่นิวเคลียสหนักหรือนิวเคลียสที่ไม่เสถียรสูงจะสามารถจัดการได้

ในอดีต หลายการทดลองได้ถูกนำมาเปรียบเทียบกับแบบจำลองที่ค่อนข้างดิบที่จำเป็นอยู่แล้วว่ายังไม่สมบูรณ์ ไม่มีแบบจำลองเหล่านี้เลยที่จะสามารถอธิบายข้อมูลจากการทดลองเกี่ยวกับโครงสร้างของนิวเคลียสได้อย่างสมบูรณ์[16]

รัศมีของนิวเคลียส (R) ถูกพิจารณาว่าเป็นหนึ่งในปริมาณพื้นฐานที่ทุกแบบจำลองจะต้องคาดการณ์เอา สำหรับนิวเคลียสที่เสถียร (ไม่ใช่นิวเคลียสที่มีรัศมีหรือนิวเคลียสบิดเบี้ยวอื่น ๆ ที่ไม่เสถียร) รัศมีของนิวเคลียสจะมีค่าโดยประมาณเป็นสัดส่วนกับรากที่สามของเลขมวล (A) ของนิวเคลียสและโดยเฉพาะอย่างยิ่งในนิวเคลียสที่มีนิวคลีออนจำนวนมาก เมื่อพวกมันจัดเรียงตัวแบบทรงกลมมากขึ้น:

นิวเคลียสที่เสถียรมีค่าความหนาแน่นโดยประมาณ และดังนั้นรัศมีของนิวเคลียร์ R สามารถประมาณได้จากสูตรดังต่อไปนี้

 

โดยที่ A = เลขมวลของอะตอม (จำนวนโปรตอน Z บวกกับจำนวนนิวตรอน N) และ r0 = 1.25 fm = 1.25 × 10−15 m. ในสมการนี​​้ ค่าคงที่ r0 แตกต่างกันอยู่ 0.2 fm ขึ้นอยู่กับนิวเคลียสในคำถาม แต่มีการเปลี่ยนแปลงน้อยกว่า 20% จากค่าคงที่[17]

พูดอีกอย่าง กลุ่มโปรตอนและนิวตรอนที่มัดรวมกันในนิวเคลียสจะให้ขนาดโดยรวมโดยประมาณเท่ากับการมัดรวมกันของทรงกลมแข็งของขนาดที่คงที่ (เช่นหินอ่อน) บรรจุลงในถุงทรงกลมหรือเกือบทรงกลมที่อัดแน่น (บางนิวเคลียสที่เสถียรจะไม่ค่อยเป็นทรงกลมมากนัก แต่เป็นที่รู้จักกันว่าเป็นรูปไข่)[ต้องการอ้างอิง]

แบบจำลองแบบหยดของเหลว

แก้

บทความหลัก: สูตรมวลกึ่งเชิงประจักษ์ (อังกฤษ: Semi-empirical mass formula)

แบบจำลองของนิวเคลียสรุ่นแรกมองนิวเคลียสว่าเป็นหยดของเหลว (อังกฤษ: liquid drop) ที่กำลังหมุน ในแบบจำลองรูปแบบนี้การแลกเปลี่ยนของแรงแม่เหล็กไฟฟ้​​าระยะทำการไกลกับแรงนิวเคลียร์ระยะทำการค่อนข้างสั้นร่วมกันก่อให้เกิดพฤติกรรมที่คล้ายกับแรงตึงผิวในหยดของเหลวในขนาดที่แตกต่างกัน สูตรนี้ประสบความสำเร็จในการอธิบายถึงปรากฏการณ์ที่สำคัญมากมายของนิวเคลียสเช่นปริมาณของพลังงานยึดเหนี่ยวของพวกมันที่มีการเปลี่ยนแปลงในขณะที่ขนาดและองค์ประกอบของพวกมันมีการเปลี่ยนแปลง (ดู สูตรมวลกึ่งเชิงประจักษ์) แต่มันก็ไม่ได้อธิบายถึงความมั่นคงพิเศษที่เกิดขึ้นเมื่อนิวเคลียสมี "เลขมายา" พิเศษของโปรตอนหรือนิวตรอน

ศัพท์หลายคำในสูตรมวลกึ่งเชิงประจักษ์ที่สามารถใช้ในการประมาณพลังงานยึดเหนี่ยวของนิวเคลียสจำนวนมากได้รับการพิจารณาว่าเป็นผลรวมของห้าประเภทของพลังงาน (ดูด้านล่าง) จากนั้นภาพของนิวเคลียสที่เป็นหยดของเหลวที่ไม่อัดแน่นจะเป็นผลมาจากการแปรเปลี่ยนที่สังเกตได้ของพลังงานยึดเหนี่ยวของนิวเคลียส:

 

พลังงานกลุ่ม (อังกฤษ: Volume energy) เกิดขึ้นเมื่อมีการชุมนุมของเหล่านิวคลีออนที่มีขนาดเดียวกัน พวกมันจะเกาะกลุ่มกันเป็นปริมาณขนาดเล็กที่สุด ในแต่ละนิวคลีออนที่อยู่ด้านในจะมีจำนวนที่แน่นอนของนิวคลีออนอื่น ๆ มาติดต่อกับมัน ดังนั้นพลังงานของนิวเคลียสนี้จะเป็นสัดส่วนกับปริมาณนั้น

พลังงานที่พื้นผิว (อังกฤษ: Surface energy). นิวคลีออนที่พื้นผิวของนิวเคลียสจะมีปฏิสัมพันธ์กับนิวคลีออนอื่น ๆ ไม่กี่ตัว น้อยกว่าตัวที่อยู่ด้านในของนิวเคลียส ดังนั้นพลังงานยึดเหนี่ยวของมันจึงมีน้อย คำว่าพลังงานพื้นผิวนี้จะพิจารณาถึงสิ่งนั้น ดังนั้นมันจึงมีค่าเป็นลบและเป็นสัดส่วนกับพื้นที่ผิว

พลังงานคูลอมบ์ (อังกฤษ: Coulomb energy). แรงผลักไฟฟ้าระหว่างแต่ละคู่ของโปรตอนในหนึ่งนิวเคลียสจะส่งผลทำให้พลังงานยึดเหนี่ยวของมันลดลง

พลังงานไม่สมมาตร (อังกฤษ: Asymmetry energy) (หรือที่เรียกว่า พลังงานพอลลี). พลังงานนี้เกี่ยวข้องกับ หลักการการยกเว้นของพอลลี สมมติว่ามันไม่ได้เป็นพลังงานคูลอมบ์, รูปแบบที่เสถียรมากที่สุดของสสารนิวเคลียร์น่าจะมีจำนวนนิวตรอนเท่ากับจำนวนโปรตอน เนื่องจากจำนวนของนิวตรอนและโปรตอนที่ไม่เท่ากัน จึงเป็นการบ่งบอกถึงการเติมระดับพลังงานที่สูงกว่าสำหรับประเภทหนึ่งของอนุภาค ขณะที่ปล่อยให้ระดับพลังงานที่ต่ำกว่าว่างลงสำหรับประเภทอื่น

พลังงานการจับคู่. พลังงานที่เกิดขึ้นจากการจับคู่ของโปรตอนด้วยกันและนิวตรอนด้วยกัน อนุภาคที่จับคู่กันจะเสถียรกว่าอนุภาคที่ไม่จับคู่

แบบจำลองแบบเปลือกและแบบควอนตัมอื่น ๆ

แก้

บทความหลัก: แบบจำลองแบบเปลือกนิวเคลียส

แบบจำลองของนิวเคลียสได้มีการนำเสนอในหลายรูปแบบเช่นกัน ในแบบจำลองเหล่านั้นนิวคลีออนทั้งหลายจะครอบครองวงโคจรเหมือน วงโคจรของอะตอม ในทฤษฎี ฟิสิกส์ของอะตอม แบบจำลองแบบคลื่นเหล่านี้จินตนาการว่าพวกนิวคลีออนจะเป็นได้อย่างใดอย่างหนึ่ง คือเป็นอนุภาคจุดที่ไม่มีขนาดในหลุมศักยภาพ หรือก็เป็นคลื่นอย่างใน "แบบจำลองออปติค" ที่โคจรแบบไร้แรงเสียดทานด้วยความเร็วสูงในหลุมศักยภาพ

ในแบบจำลองดังกล่าวข้างต้น พวกนิวคลีออนอาจครอบครองวงโคจรเป็นคู่ เนื่องจากพวกมันอยู่ในตระกูลเฟอร์มิออน ซึ่งจะช่วยในการอธิบาย ผลกระทบของ Z และ N แบบคู่และคี่ ที่รู้จักกันดีจากการทดลองหลายครั้ง ธรรมชาติและความจุที่แท้จริงของเปลือกนิวเคลียร์จะแตกต่างจากบรรดาอิเล็กตรอนในวงโคจรของอะตอม เบื้องต้นเป็นเพราะหลุมศักยภาพในที่ซึ่งการเคลื่อนที่ของนิวคลีออน (โดยเฉพาะในนิวเคลียสขนาดใหญ่) จะค่อนข้างแตกต่างจากหลุมศักยภาพแม่เหล็กไฟฟ้าส่วนกลางที่หลุมนี้จะยึดเหนี่ยวอิเล็กตรอนไว้ในอะตอม. ความคล้ายคลึงกับรูปแบบการโคจรของอะตอมบางอย่างอาจจะเห็นได้ในนิวเคลียสขนาดเล็กเช่นที่ ฮีเลียม-4 ซึ่งในสารชนิดนี้สองโปรตอนและสองนิวตรอนจะแยกกันครอบครองวงโคจรที่ 1s คล้ายคลึงกับวงโคจร 1s สำหรับสองอิเล็กตรอนในอะตอมของฮีเลียม และบรรลุความมั่นคงที่ผิดปกติด้วยเหตุผลเดียวกัน ทุกนิวเคลียสที่มีนิวคลีออน 5 ตัวก็จะยังไม่มั่นคงและอายุสั้นอย่างมาก ฮีเลียม-3 ที่มี 3 นิวคลีออน มีเสถียรภาพมากแม้ว่าจะขาดการปิดของเปลือกวงโคจร 1s นิวเคลียสอื่นที่มี 3 นิวคลีออน, ไทรทัน (ไฮโดรเจน-3) จะไม่เสถียรและจะสลายตัวไปเป็นฮีเลียม-3 เมื่อถูกแยก. ความมั่นคงที่อ่อนแอของนิวเคลียร์ที่มี 2 นิวคลีออน {NP} ในวงโคจร 1s จะพบในดิวเทอรอน (ไฮโดรเจน-2) ที่มีเพียงหนึ่งนิวคลีออนเท่านั้นในแต่ละหลุมศักยภาพโปรตอนและหลุมศักยภาพนิวตรอน ในขณะที่แต่ละนิวคลีออนเป็นเฟอร์มิออนตัวหนึ่ง {NP} ดืวเทอรอนจะเป็นโบซอน ดังนั้นมันจึงไม่เป็นไปตาม'การยกเว้นของ Pauli' สำหรับการจับกลุ่มอย่างใกล้ชิดภายในเปลือก ลิเธียม-6 ที่มี 6 นิวคลีออนจะเสถียรอย่างมากโดยปราศจากการปิดของวงโคจร 1p ที่สองของเปลือก สำหรับนิวเคลียสเบาที่มีจำนวนนิวคลีออนรวมตั้งแต่ 1 ถึง 6 เฉพาะพวกที่มีแค่ 5 จะไม่แสดงบางหลักฐานของความมั่นคง ข้อสังเกตของเสถียรภาพแบบบีตาของนิวเคลียสเบาด้านนอกเปลือกหอยที่ปิดแสดงให้เห็นว่าความมั่นคงนิวเคลียร์จะมีความซับซ้อนมากกว่าการปิดที่เรียบง่ายของวงโคจรเปลือกหอยที่มี เลขมายา ของโปรตอนและนิวตรอน

สำหรับนิวเคลียสขนาดใหญ่ เปลือกหอยจะถูกครอบครองโดยกลุ่มของนิวคลีออน เปลือกหอยพวกนี้เริ่มที่จะแตกต่างจากเปลือกหอยอิเล็กตรอนอย่างมีนัยสำคัญ ยิ่งกว่านั้น สฤษฎีนิวเคลียสปัจจุบันได้คาดการณ์ถึง เลขมายา ของเปลือกหอยนิวเคลียสว่าจะถูกเติมเต็มด้วยทั้งโปรตอนและนิวตรอน การปิดของเปลือกหอยที่เสถียรจะคาดการณ์ถึงรูปแบบการทำงานที่เสถียรแบบผิดปกติ คล้ายกับกลุ่มขุนนางของก๊าซที่เกือบเฉื่อยในวิชาเคมี ตัวอย่างหนึ่งคือความมั่นคงของเปลือกของ 50 โปรตอนที่ถูกปิด ซึ่งจะยอมให้ ดีบุก ที่จะมี 10 ไอโซโทปที่เสถียร ซึ่งมากกว่าองค์ประกอบอื่น ๆ. ในทำนองเดียวกันระยะทางจากเปลือกไปยังฝาปิดจะอธิบายถึงความไม่แน่นอนที่ผิดปกติของไอโซโทปที่มีห่างไกลจากตัวเลขที่มั่นคงของอนุภาคเหล่านี้ เช่นธาตุกัมมันตรังสีที่ 43 (เทคนีเชียม) และ 61 (โพรมีเทียม) ซึ่งแต่ละตัวจะนำหน้าและตามหลังด้วยองค์ประกอบที่เสถียร 17 ตัวหรือมากกว่า

อย่างไรก็ตาม มีหลายปัญหาที่เกิดขึ้นกับแบบจำลองเปลือกหอยเมื่อมีความพยายามที่จะทำให้คุณสมบัติของนิวเคลียสห่างไกลจากเปลือกหอยที่ปิด นี้ได้นำไปสู่​​การบิดเบือนรูปร่าง หลังเฉพาะกิจ ที่ซับซ้อนของรูปร่างของบ่อศักยภาพเพื่อให้มันใช้ได้พอดีกับข้อมูลจากการทดลอง แต่คำถามก็ยังคงอยู่ว่าการยักย้ายถ่ายเททางคณิตศาสตร์เหล่านี้จะสอดคล้องกันจริงกับการแปรรูปร่างเชิงพื้นที่ในนิวเคลียสของจริงหรือไม่ ปัญหาเกี่ยวกับแบบจำลองเปลือกหอยได้นำบางคนที่จะเสนอผลกระทบของแรงนิวเคลียสแบบสองร่างและสามร่างที่เป็นจริง (อังกฤษ: realistic two-body and three-body nuclear force effects) ที่เกี่ยวข้องกับกลุ่มนิวคลีออน จากนั้นก็สร้างนิวเคลียสขึ้นบนพื้นฐานนี้ สองแบบจำลองแบบกลุ่มดังกล่าวคือแบบจำลอง Close-Packed Spheron ของ Linus Pauling และแบบจำลอง 2D Ising ของ MacGregor[16]

ความสม่ำเสมอระหว่างแบบจำลอง

แก้

บทความหลัก: โครงสร้างของนิวเคลียส

เช่นเดียวกับกรณีของ ฮีเลียมเหลว ที่เป็น สุดยอดของเหลว (อังกฤษ: superfluid) นิวเคลียสของอะตอมจะเป็นตัวอย่างหนึ่งของสถาวะที่ทั้ง (1) กฎทางกายภาพของอนุภาค "ธรรมดา" สำหรับปริมาณ และ (2) กฎของกลศาสตร์ควอนตัมที่ใช้งานไม่ง่ายสำหรับธรรมชาติที่เหมือนคลื่นจะนำมาประยุกต์ใช้ ในฮีเลียมสุดยอดของเหลว อะตอมของฮีเลียมมีปริมาณ และ "สัมผัส" ซึ่งกันและกันเป็นหลัก ในเวลาเดียวกัน ก็ยังแสดงคุณสมบัติจำนวนมากที่แปลก, สม่ำเสมอกับ การควบแน่นแบบ Bose-Einstein การควบแน่นนี้เปิดเผยว่าพวกมันยังมีธรรมชาติเหมือนคลื่นและไม่แสดงคุณสมบัติของของเหลวมาตรฐานอีกด้วย เช่นแรงเสียดทาน สำหรับนิวเคลียสที่ทำจาก แฮดรอน ซึ่งเป็นพวก เฟอร์มิออน ประเภทเดียวกันของการควบแน่นจะไม่ได้เกิดขึ้น และยิ่งกว่านั้น คุณสมบัติของนิวเคลียสจำนวนมากสามารถที่จะอธิบายได้เช่นกันโดยการรวมกันของคุณสมบัติของอนุภาคที่มีปริมาณเท่านั้น รวมเข้ากับลักษณะการเคลื่อนไหวที่ไม่มีแรงเสียดทานของพฤติกรรมเหมือนคลื่นของวัตถุที่ติดกับอยู่ใน วงโคจรควอนตัม ของ Erwin Schrödinger

อ้างอิง

แก้
  1. Iwanenko, D.D., The neutron hypothesis, Nature 129 (1932) 798.
  2. Heisenberg, W. (1932). "Über den Bau der Atomkerne. I". Z. Phys. 77: 1–11. Bibcode:1932ZPhy...77....1H. doi:10.1007/BF01342433.
  3. Heisenberg, W. (1932). "Über den Bau der Atomkerne. II". Z. Phys. 78 (3–4): 156–164. Bibcode:1932ZPhy...78..156H. doi:10.1007/BF01337585.
  4. Heisenberg, W. (1933). "Über den Bau der Atomkerne. III". Z. Phys. 80 (9–10): 587–596. Bibcode:1933ZPhy...80..587H. doi:10.1007/BF01335696.
  5. Miller A. I. Early Quantum Electrodynamics: A Sourcebook, Cambridge University Press, Cambridge, 1995, ISBN 0521568919, pp. 84–88.
  6. Bernard Fernandez and Georges Ripka (2012). "Nuclear Theory After the Discovery of the Neutron". Unravelling the Mystery of the Atomic Nucleus: A Sixty Year Journey 1896 — 1956. Springer. p. 263. ISBN 9781461441809. สืบค้นเมื่อ 15 February 2013.
  7. Geoff Brumfiel (July 7, 2010). "The proton shrinks in size". Nature. doi:10.1038/news.2010.337.
  8. https://en.wiki.x.io/wiki/Atomic_radii_of_the_elements_(data_page)
  9. Rutgers University. "The Rutherford Experiment". physics.rutgers.edu. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2001-11-14. สืบค้นเมื่อ February 26, 2013.
  10. D. Harper. "Nucleus". Online Etymology Dictionary. สืบค้นเมื่อ 2010-03-06.
  11. G.N. Lewis (1916). "The Atom and the Molecule". Journal of the American Chemical Society. 38 (4): 4. doi:10.1021/ja02261a002. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2013-11-25. สืบค้นเมื่อ 2016-01-11.
  12. A.G. Sitenko, V.K. Tartakovskiĭ (1997). Theory of Nucleus: Nuclear Structure and Nuclear Interaction. Kluwer Academic. p. 3. ISBN 0-7923-4423-5.
  13. M.A. Srednicki (2007). Quantum Field Theory. Cambridge University Press. pp. 522–523. ISBN 978-0-521-86449-7.
  14. J.-L. Basdevant, J. Rich, M. Spiro (2005). Fundamentals in Nuclear Physics. Springer. p. 155. ISBN 0-387-01672-4.{{cite book}}: CS1 maint: multiple names: authors list (ลิงก์)
  15. Machleidt, R.; Entem, D.R. (2011). "Chiral effective field theory and nuclear forces". Physics Reports. 503 (1): 1–75. arXiv:1105.2919v1. Bibcode:2011PhR...503....1M. doi:10.1016/j.physrep.2011.02.001.
  16. 16.0 16.1 N.D. Cook (2010). Models of the Atomic Nucleus (2nd ed.). Springer. p. 57 ff. ISBN 978-3-642-14736-4.
  17. K.S. Krane (1987). Introductory Nuclear Physics. Wiley-VCH. ISBN 0-471-80553-X.

อิเล็กตรอน