ค่าเบี่ยงเบนมาตรฐาน

ค่าเบี่ยงเบนมาตรฐาน หรือ ส่วนเบี่ยงเบนมาตรฐาน หรือ ความเบี่ยงเบนมาตรฐาน (อังกฤษ: standard deviation: SD) ในทางสถิติศาสตร์และความน่าจะเป็น เป็นการวัดการกระจายแบบหนึ่งของกลุ่มข้อมูล สามารถนำไปใช้กับการแจกแจงความน่าจะเป็น ตัวแปรสุ่ม ประชากร หรือมัลติเซต ค่าเบี่ยงเบนมาตรฐานมักเขียนแทนด้วยอักษรกรีกซิกมาตัวเล็ก () นิยามขึ้นจากส่วนเบี่ยงเบนแบบ root mean square (RMS) กับค่าเฉลี่ย หรือนิยามขึ้นจากรากที่สองของความแปรปรวน

ค่าเบี่ยงเบนมาตรฐานคิดค้นโดย ฟรานซิส กาลตัน (Francis Galton) ในช่วงปลายคริสต์ทศวรรษ 1860 [1] เป็นการวัดการกระจายทางสถิติที่เป็นปกติทั่วไป ใช้สำหรับเปรียบเทียบว่าค่าต่างๆ ในเซตข้อมูลกระจายตัวออกไปมากน้อยเท่าใด หากข้อมูลส่วนใหญ่อยู่ใกล้ค่าเฉลี่ยมาก ค่าเบี่ยงเบนมาตรฐานก็จะมีค่าน้อย ในทางกลับกัน ถ้าข้อมูลแต่ละจุดอยู่ห่างไกลจากค่าเฉลี่ยเป็นส่วนมาก ค่าเบี่ยงเบนมาตรฐานก็จะมีค่ามาก และเมื่อข้อมูลทุกตัวมีค่าเท่ากันหมด ค่าเบี่ยงเบนมาตรฐานจะมีค่าเท่ากับศูนย์ นั่นคือไม่มีการกระจายตัว คุณสมบัติที่เป็นประโยชน์อย่างหนึ่งก็คือ ค่าเบี่ยงเบนมาตรฐานใช้หน่วยอันเดียวกันกับข้อมูล แต่กับความแปรปรวนนั้นไม่ใช่

เมื่อตัวอย่างของข้อมูลกลุ่มหนึ่งถูกเลือกมาจากประชากรทั้งหมด ค่าเบี่ยงเบนมาตรฐานของประชากรสามารถประมาณค่าได้จากค่าเบี่ยงเบนมาตรฐานของกลุ่มตัวอย่างนั้น

นิยาม

แก้

ค่าเบี่ยงเบนมาตรฐานของตัวแปรสุ่ม   มีการนิยามไว้ดังนี้

 

เมื่อ   หมายถึงค่าคาดหมายของ   (เป็นอีกความหมายหนึ่งของมัชฌิม) และ   หมายถึงความแปรปรวนของ  

แต่ก็ไม่ใช่ว่าตัวแปรสุ่มทุกตัวจะมีค่าเบี่ยงเบนมาตรฐาน ถ้าหากค่าคาดหมายไม่มีอยู่จริงหรือไม่นิยาม ตัวอย่างเช่น ค่าเบี่ยงเบนมาตรฐานของตัวแปรสุ่มภายใต้การแจกแจงโคชี (Cauchy distribution) จะไม่นิยาม เพราะว่า   ก็ไม่นิยามเช่นกัน

ถ้าตัวแปรสุ่ม   มีพื้นฐานอยู่บนเซตข้อมูล   ซึ่งสมาชิกเป็นจำนวนจริงและมีความน่าจะเป็นเท่ากัน ดังนั้นค่าเบี่ยงเบนมาตรฐานสามารถคำนวณได้จากสูตรข้างล่างนี้ อันดับแรกต้องคำนวณหาค่าเฉลี่ยของ   เสียก่อน ค่าเฉลี่ยเขียนแทนด้วย   ซึ่งนิยามด้วยผลรวม (summation) ดังนี้

 

เมื่อ   คือจำนวนสมาชิกของเซตข้อมูล จากนั้นจึงสามารถคำนวณค่าเบี่ยงเบนมาตรฐานได้จาก

 

ในทางปฏิบัติ การคำนวณค่าเบี่ยงเบนมาตรฐานของตัวแปรสุ่มชนิดไม่ต่อเนื่องข้างต้น สามารถสรุปได้ดังนี้

  1. สำหรับแต่ละค่าของ   ให้คำนวณผลต่างของ  
  2. นำผลต่างแต่ละตัวมายกกำลังสอง
  3. บวกผลลัพธ์ทั้งหมดเข้าด้วยกันแล้วหารด้วย   ค่าที่ได้นี้คือความแปรปรวน  
  4. คำนวณหารากที่สองที่เป็นบวกของความแปรปรวน จะได้ค่าเบี่ยงเบนมาตรฐาน

นอกจากนั้นสูตรดังกล่าวสามารถดัดแปลงให้เป็นอีกรูปแบบหนึ่งได้ดังนี้

 

ซึ่งความเท่ากันของทั้งสองสูตร สามารถพิสูจน์ได้ด้วยความรู้ทางพีชคณิต

 

การประมาณค่าเบี่ยงเบนมาตรฐานของประชากร

แก้

ในความเป็นจริง การคำนวณหาค่าเบี่ยงเบนมาตรฐานของประชากรทั่วทั้งหมดนั้น อาจไม่สามารถทำให้เกิดขึ้นจริงได้ เว้นแต่ในกรณีเฉพาะเช่นการทดสอบมาตรฐาน (standardized test) ซึ่งทุกสมาชิกของประชากรจะถือว่าเป็นกลุ่มตัวอย่างทั้งหมด แต่ในกรณีส่วนใหญ่ ค่าเบี่ยงเบนมาตรฐานจะถูกคาดคะเนจากจากส่วนเบี่ยงเบนของตัวอย่างกลุ่มหนึ่งที่มาจากประชากร การวัดที่มักถูกใช้เป็นปกติทั่วไปคือ ค่าเบี่ยงเบนมาตรฐานของตัวอย่าง (sample standard deviation) ซึ่งนิยามโดย

 

เมื่อ   คือตัวอย่างและ   คือค่าเฉลี่ยของตัวอย่าง ตัวส่วน   คือองศาเสรี (degrees of freedom) ของเวกเตอร์  

เหตุผลของการนิยามเช่นนี้คือ   เป็นตัวประมาณค่าไม่เอนเอียง (unbiased estimator) สำหรับความแปรปรวน   บนประชากรที่เป็นพื้นฐาน ถ้าหากความแปรปรวนนั้นมีค่า และค่าต่างๆ ของตัวอย่างได้รับการสุ่มออกมาโดยอิสระต่อกัน อย่างไรก็ตาม   ไม่ใช่ตัวประมาณค่าไม่เอนเอียงของ   แต่เป็นการประเมินค่าที่ต่ำกว่าค่าเบี่ยงเบนมาตรฐานของประชากร และถึงแม้ว่าตัวประมาณค่าไม่เอนเอียงของ   จะสามารถทราบได้เมื่อตัวแปรสุ่มมีการแจกแจงปกติ แต่สูตรดังกล่าวจะซับซ้อนขึ้นและมีการปรับแต่งตัวเลข ยิ่งกว่านั้นความไม่เอนเอียงก็ไม่ได้เป็นที่ต้องการเสมอไป

ตัวประมาณค่าอีกแบบหนึ่งบางครั้งก็ถูกใช้เหมือนสูตรเดิม

 

รูปแบบนี้จะทำให้เกิดค่าคลาดเคลื่อนประเภท mean squared error น้อยกว่าตัวประมาณค่าไม่เอนเอียง และเป็นการประมาณความน่าจะเป็นสูงสุด (Maximum Likelihood Estimation) เมื่อการกระจายของประชากรนั้นเป็นการแจกแจงปกติ

ค่าเบี่ยงเบนมาตรฐานของตัวแปรสุ่มชนิดต่อเนื่อง

แก้

การแจกแจงต่อเนื่อง (continuous distribution) มักจะเป็นการให้สูตรมาเพื่อคำนวณหาค่าเบี่ยงเบนมาตรฐานเป็นฟังก์ชันของพารามิเตอร์ของการแจกแจง ในกรณีทั่วไปค่าเบี่ยงเบนมาตรฐานของตัวแปรสุ่มชนิดต่อเนื่อง   โดยมี   เป็นฟังก์ชันความหนาแน่นของความน่าจะเป็น (probability density function) สามารถคำนวณได้จาก

 

เมื่อ

 

คุณสมบัติของค่าเบี่ยงเบนมาตรฐาน

แก้
  •  
  •  
  •  

เมื่อ   เป็นค่าคงตัว และ   คือความแปรปรวนร่วมเกี่ยว (covariance) ของตัวแปรสุ่ม   และ  

อ้างอิง

แก้

แหล่งข้อมูลอื่น

แก้